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Through the study of airport network of China(ANC), composed of 128 airports(nodes) and 1165 flights
(edges), we show the topological structure of ANC conveys two characteristics of small worlds, a short average
path length(2.067) and a high degree of clustering(0.733). The cumulative degree distributions of both
directed and undirected ANC obey two-regime power laws with different exponents, i.e., the so-called double
Pareto law. In-degrees and out-degrees of each airport have positive correlations, whereas the undirected
degrees of adjacent airports have significant linear anticorrelations. It is demonstrated both weekly and daily
cumulative distributions of flight weights(frequencies) of ANC have power-law tails. Besides, the weight of
any given flight is proportional to the degrees of both airports at the two ends of that flight. It is also shown the
diameter of each subcluster(consisting of an airport and all those airports to which it is linked) is inversely
proportional to its density of connectivity. Efficiency of ANC and of its subclusters is measured through a
simple definition. In terms of that, the efficiency of ANC’s subclusters increases as the density of connectivity
does. ANC is found to have an efficiency of 0.484.
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The ER model[1] of random graphs, introduced by Erdös
and Rényi, has attracted much attention from both mathema-
ticians and physicists[2–6], and henceforth shaped our un-
derstanding of networks for decades. The growing interest in
whether randomness dominates real-world networks, how-
ever, was eventually prompted by recent advances in two
main streams of topics. One part of this work was related to
“small worlds,” originally described as “six degrees of sepa-
ration” [7] which manifests that humans are connected
through a short, limited chain of acquaintances. The concept
was successfully employed by Watts and Strogatz[8,9] in
exploring the dynamics of a great variety of networks be-
tween order and randomness, e.g., the actor and actress net-
works [10], the chemical reaction networks[11], the rumor
spreading networks[9], the food webs[12], and the elec-
tronic circuits [13], etc. Another parallel achievement was
made by the research team of Barabási[14–17], which led to
the finding of a class of networks with scale-free degree dis-
tributions, for example, Internet[14], the networks of coau-
thorship in natural sciences[18], the web of sexual contacts
[19], and the graph of human language[20], etc.

Composed of a number of airports and flights, air net-
works are simply normal examples of transportation systems
among ubiquitous networks in nature. Nevertheless, they ap-
pear extraordinary and unique due to the following features:
(a) quite limited system sizes, from a few hundred to a few
thousand at most;(b) relatively stationary structures with
respect to both time and space;(c) bidirectional, weighted
links (flights) with slightly fluctuating frequency.

This paper will present investigations of airport network
in China (ANC). We demonstrate that on one hand ANC
embodies part features of small worlds and of scale-free net-
works. On the other hand, however, ANC exhibits more fea-

tures belonging to its topological uniqueness. The whole text
is organized as follows. Section I presents the results on
degree distributions and degree correlations of ANC. Section
II gives the flight weight distributions and the weight-degree
correlation of ANC. Section III analyzes the clustering coef-
ficients of ANC. In Sec. IV we calculate the diameter of
ANC and discuss the efficiency of ANC by proposing a
simple definition for it. Conclusions and discussions are
given in the last part, Sec. V.

I. DEGREE DISTRIBUTIONS AND DEGREE
CORRELATIONS

ANC consists ofN=128 [21] airports (nodes) and 1165
flights (edges) that connect most major cities in China. The
topology of ANC can be symbolized by a 128312837 con-
nectivity matrix C whose entryCijt is 1 if there is a link
pointing from nodei to node j at the tth day of a week
(herein and aftert=1, 2, 3, 4, 5, 6, and 7 specifies the seven
days within a week, starting from Monday, respectively) and
0 otherwise, and a 128312837 weight matrix W [22]
whose element is defined as

Wijt =
nijt

o
t

o
hi,jj

nijt

, s1d

wherenijt is the number of flightsi → j at the tth day. Wijt
satisfies the normalization condition, i.e.,ot ohi,jj Wijt =1.
Normally, Cijt =Cjit andWijt =Wjit only hold for undirected
ANC.

We employkin
wsid and kou

w sid to denote the in-degree and
out-degree of a given nodei in the directed ANC during a
whole week time, andkun

w sid to represent the undirected de-
gree of the undirected ANC in the same week. Hence, we
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fCijt + Cjitg − 1D , s4d

wherehsxd is a unit step function, which takes 1 forxù0
and 0 otherwise.

First we consider the three distributions ofkin
wsid, kou

w sid,
and kun

w sid, respectively. Here the cumulative distribution,
widely used in economies and well known as the Pareto law
[23], is adopted to reduce the statistical errors arising from
the limited system size. The cumulative form,

P„kin
wsid . k…fP„kou

w sid . k… or P„kun
w sid . k…g,

gives the probability that a given airporti has an in-degree
sout-degree or undirected degreed larger thank. Figure 1sad
presents behaviors of the three distributions. It is amazing to
find that all three distributions follow nearly a same two-
regime power law with two different exponents, known as
double Pareto lawf24g, with a turning point at degree value
kc.26, which can be well prescribed by the following
expression:

PsK . kd , Hk−g1, for k ø kc

k−g2, for k . kc,
s5d

where g1 and g2 are the respective degree exponents of
two separate power laws. By means of fitting, exponents
pairssg1,g2d of the three distributions in Fig. 1sad ares0.428,
4.161d, s0.416, 4.453d, and s0.45, 4.535d. Using a simple
algebra, the original distributions ofkin

wsid fkou
w sid or kun

w sidg
can be written as

Pskd =
] PsK . kd

] k
, Hk−sg1+1d for k ø kc

k−sg2+1d for k . kc,
s6d

wherek specifies the three different degrees above. Corre-
spondingly, the mean values ofkin

wsid, kou
w sid, and kun

w sid are
18.931, 17.156, and 18.203. This conveys that each airport,
on average, is connected to around 18 other airports.

The undirected degree of a certain airporti at thetth day
of a week is given by

kun
t = o

j

jÞi

hsCijt + Cjit − 1d. s7d

The cumulative distributions ofkun
t , with t=1, 2, 3, 4, 5, 6,

and 7, shown in Fig. 1sbd, reflects the daily evolution of the
topology of the undirected ANC within a week. It is evident
from Fig. 1sbd that the distributions of days from Monday to
Saturday nearly coincide with one another, on the same
double Pareto law. The distribution of Sunday, however, de-
viates apparently from the shared curve and itself obeys an-
other law. By checking the original data, one may find out
the discrepancy is mainly caused by the fact that some flights
are not available on Sundays. Exponents pairs and average
undirected degrees of the undirected ANC for each day of
one week are listed in Table I. As we can see, the values of
g1 and g2 in the table are in generalsexcept on Sundaysd

FIG. 1. Cumulative degree distributions of ANC for undirected
degree, in-degree, and out-degree of(a) a whole week and(b) each
day from Monday to Sunday. Cumulative weight distributions of
ANC for (c) a whole week and(d) each day from Monday to
Sunday.

TABLE I. Comparison of relevant variables of daily undirected ANC(from Monday to Sunday): g1 and
g2 are exponents of two power laws of cumulative degree distributions;kkl, the average degree;g, the
exponent of flight weight distributions; C, the clustering coefficient of the whole system.

Mon Tue Wed Thu Fri Sat Sun

g1 0.582 0.569 0.568 0.603 0.558 0.574 0.463

g2 4.398 4.190 4.338 3.949 4.308 4.264 3.992

kkl 13.570 14.376 13.967 14.017 14.033 14.586 12.264

g 1.744 1.682 1.729 1.699 1.679 1.747 2.329

C 0.626 0.621 0.614 0.590 0.638 0.620 0.576
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slightly larger than the counterparts of undirected ANC dur-
ing a whole week. The average degrees of each day, around
14 s12 on Sundaysd, are much smaller than 18, the counter-
part of a week. This is understandable because many flights
are only available on certain days of a week.

We also check an important feature of ANC, the degree
correlations. First we come to the correlation between in-
degrees and out-degrees, simply called in-out degree corre-
lation. This is quite natural for airport networks because
each airport should generally maintain the balance of its traf-
fic flow. Normally, for each airport, the higher its in-degree,
the higher its out-degree. We plotkin

wsid versus kou
w sid

si =1,2, . . . ,128d in Fig. 2. The following expression can be
obviously obtained by fitting the data:

kin
wsid . kou

w sid. s8d

Evidently, the in-out degree correlation is very strong.
Another possible correlation exists between the degrees of

adjacent airports, named degree-degree correlation. The
degree-degree correlation tells that the degrees are not inde-
pendent and correlate with those of their neighbors. It can be
demonstrated by calculating the mean degree of the neigh-
bors of a given airport as a function of the degree of that
airport. Figure 3 presents our analysis of degree-degree cor-
relation in the undirected ANC. As shown, the degrees of
adjacent airports have significant anticorrelations, based on
which the ANC appear to be disassortative[25]. But the
anticorrelation found in ANC is almost linear, different than
that found in Ref.[26], which is a power law with exponent
of about −0.5.

II. FLIGHT WEIGHT DISTRIBUTIONS AND WEIGHT-
DEGREE CORRELATION

An important feature of ANC is that some flights are more
frequent than others. The weight or the frequency of a certain

flight, henceforth, states the extent to which it is busy. The
weight of flight i → j in a whole week is given by

Wij
w = o

t=1

7

Wijt . s9d

The cumulative distribution ofWij
w, PsWij

w.Wd, gives the
probability that a flight has a weight larger thanw. Shown in
Fig. 1scd, PsWij

w.Wd has a power-law tail,

PsWij
w . Wd , W−g, s10d

whereg=1.65.Through a simple algebra, one may obtain
PsWd,sWd−2.65. Such a power-law tail indicates that the
probability of finding a very busy flight is nonzero, and
significant instead. The daily cumulative distributions of
Wijt within a week is given in Fig. 1sdd. Among the seven
distributions, those from Monday to Saturday obey the
same power law, while Sunday data reveal a steeper
power law that extends a narrower region on thex coor-
dinate. The exponents of flight weight distributions of
each day are also presented in Table I and are slightly
larger than 1.65.

We also conjecture if there is a certain kind of relation
between the weight of a given flight and the degrees of the
two airports at both ends of that flight. We simply call it
weight-degree correlation. Without losing the generality, we
propose the following ansatz for the possible existence of
such correlation:

Wij
w , fkun

w sidkun
w s jdg1/2. s11d

This scaling ansatz has been well supported by the real data,
shown in Fig. 4.

FIG. 2. Correlation between in-degrees and out-degrees of the
directed ANC in a whole week.

FIG. 3. Correlation between degrees of adjacent airports of the
undirected ANC in a whole week.
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III. CLUSTERING COEFFICIENT

The neighborhoodGv of a given airportv is a graph which
includes all nodes which have flights withv. The clustering
coefficient[9] CsGvd of neighborhoodGv of airport v char-
acterizes the extent to which airports inGv are connected to
every other. In precise words,

CsGvd =
EsGvd

Cm
2 , s12d

whereEsGvd is the number of real connections inGv consist-
ing of m airports, andCm

2 is the total number of all possible
connections inGv. The average clustering coefficient of the
entire air network is defined as

C =
1

N
o
Gv

CsGvd, s13d

whereN is the number of airports of the whole network. By
calculation, C of the entire undirected ANC for a whole
week is 0.733, in stark contrast with the low density of con-
nectivity, kkl /N, 0.143.C of the daily undirected ANC given
in Table I centralizes 0.600, the value for Sunday being
slightly lower.

IV. DIAMETER AND EFFICIENCY

For a connected network, the diameterD can have the
following definition:

D =
1

NsN − 1d/2o
si,jd

dminsi, jd, s14d

wheredminsi , jd represents the shortest-path length between
nodesi and j . In an air network, the diameterD indicates the
average number of transfers a passenger needs to take be-

tween the start and the end. For ANC,D is around 2.067.
Specifically, dminsi , jd in ANC only takes three distinctive
values, 1, 2, and 3, with percentages of 0.143, 0.646, and
0.211, respectively. This implies most trips will need one
intermediate transfer or two before the final destinations,
only a small percent can be reached directly.

The high clustering and the small diameter inevitably in-
dicate the small-world property of ANC. For comparison,
random graphs of the same average degree,kkl, and the same
number of nodes,N, with ANC are investigated. It is readily
learned that the average clustering coefficient of random
graphs, 0.143, is much smaller than 0.733, the weekly aver-
age clustering coefficient. The diameter of such random
graphs scales as lnN/ lnkkl, which is 1.672, less than the
counterpart of ANC.

A practical thing of ANC is related to its transportation
efficiency, which tells us how one can travel from one place
to another both quickly and economically. Let us first take a
look at the efficiency of subclusters of ANC. A subcluster
here is composed of a hubv, the central node, and its neigh-
borhoodGsvd consisting of whoever has flights with the hub.
The largest subcluster of ANC includes 84 airports, and the
smallest one, only 2. In terms of graph theory, the subclusters
consist of only two kinds of structure, trees and triangles.
The density of connectivity of a subcluster withm nodes and
EsGvd edges inGsvd of the hub is

rdc =
2fEsGvd + mg

m2 + m
. s15d

The diameter of the subcluster,dsc, can be readily derived:

Dsc=
2fm2 − EsGvdg

m2 + m
. s16d

The plot ofDsc versusrdc, for all 128 subclusters of ANC, is
presented in Fig. 5sad, which can be well fitted by a straight
line. The largerrdc is, the more direct connections there exist
in the subclusters, and the smaller the diameter will be. In the
case of a complete graph, the diameter will be definitely 1.

We simply define the efficiency of subclusters of ANC,
Esc, as

Esc=
1

Dsc
=

m2 + m

2fm2 − EsGvdg
. s17d

After a simple calculation,Esc versusrsc is presented in Fig.
5sbd. It is clearly shown that the higher the density of con-
nectivity, the higher the efficiency of a subcluster. The effi-
ciency is 1 when the subcluster is totally connected. This
agrees with our intuition.

Compared with its subclusters, ANC itself displays no
more difference in structure. The ANC can be viewed as a
cluster with hierarchical structure[27], composed of a center,
e.g., Beijing, and whoever has direct connections with the
center, and whoever has no direct connections with the cen-
ter, but with whoever has, and so on. For a connected net-
work, such a cluster can include all nodes in the same sys-
tem. By analyzing the real data, each node of ANC is

FIG. 4. Weight-degree correlation of the undirected ANC in a
whole week.
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connected to any other with no more than three steps. In this
sense, Eq.(17) also applies to ANC. After some algebra, we
find the efficiency of ANC is 0.484.

V. CONCLUSIONS AND DISCUSSIONS

In conclusion, our analysis reveals two characteristic
small-world properties of ANC, a short average path length
and a high degree of clustering. Another important feature of
ANC, the degree distribution, however, is strikingly different
from counterparts of both scale-free networks and of random
graphs. In ANC there exist strong, positive correlations be-
tween in-degrees and out-degrees of each airport, and signifi-
cant anticorrelations between degrees of adjacent airports.
The weekly and daily weight distributions of ANC display
power-law behaviors. The existence of weight-degree corre-
lation of ANC shows that there is a dependence of the weight
of a certain flight on the degrees of the two airports at both

ends of that flight. In particular, we suggest a rough idea to
measure the efficiency of ANC and that of its subclusters.

In the previous sections we do not answer why the struc-
ture of ANC obeys double Pareto law. Here we come up with
a simple idea which can be realized through computer simu-
lation. Suppose one constructs a whole airport network from
the very beginning, with only a few airports in major cities,
following two simple rules. Under the first rule, preferential
attachment[14], a newly established airport tends to connect
to the hubs with more flights, which naturally drives the
airport network to develop a structure beyond those of ran-
dom graphs. The second rule manifests the existence of dif-
ferent growth rates of airports between the region of smaller
airports and that of larger ones. That is, in the early history of
airport network construction, smaller airports have consider-
able probabilities to be growing to accommodate more
flights. Gradually, as most major airports have been estab-
lished, the smaller airports were unlikely to expand any
more. Hence more small-sized airports were established.
This limited growth endows the airport network features part
of scale-free topology. It may be more appropriate to say that
ANC has an intermediate topology between random graphs
and scale-free networks.

Another issue should be addressed to the efficiency. The
efficiency based on our definition is solely idealistic and only
limited to the structure of the network itself. It is more ap-
propriate to call it structural efficiency. In the reality of air
transportation, the carriers(airlines) should consider more
factors in order to have a higher and reasonable efficiency.
That is, one needs to know how an air network can satisfy
the passengers’ needs on one hand, and ensure the profits of
airlines, on the other hand. This should be an interesting
topic and worth investigating.
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